Whole-Body Dynamic Obstacle Avoidance with
Humanoid Skin

Niraj Pudasaini, Carson Kohlbrenner, and William Xie
{nipu2200, cako7425, wixi6454} @colorado.edu
University of Colorado Boulder

Abstract—In order for humanoid robots to safely inhabit
and operate in human environments and beyond, they must be
able to quickly and robustly react to dynamic and numerous
obstacles. Existing methods for dynamic collision avoidance
utilize task-constrained whole-body control, which accommodates
slow-moving obstacles that do not require rapid, large bodily
adjustments. We propose an end-to-end deep reinforcement
learning (RL) method for whole-body collision avoidance of
high-velocity, dynamic obstacles on humanoid robots equipped
with proximity-sensing skins. We compare our method with
a model predictive control (MPC) baseline and evaluate on
two different sensing modalities—time-of-flight (ToF) and self-
capacitance sensing (CPS)-and a variety of sensing ranges.
Within a simplified simulation environment, our approach with
combined self-capacitive sensing and time-of-flight proximity
sensing achieves 97% avoidance success, outperforming MPC’s
31% avoidance success. Our RL implementation | and MuJoCo
MPC implementation frameworksﬂ are made open-source.

I. INTRODUCTION

Humanoid robots must rapidly and robustly avoid collisions
with dynamic obstacles for safe deployment in everyday
human environments that are unpredictable, cluttered, and
unstructured. Then, they must extend this capability to truly
adversarial environments—climate events, the deep sea, dense
flora—if they are to advance frontiers of exploration and
operation.

Traditional collision avoidance strategies rely on explicitly
defined constraints and often analytically-derived motions.
Whole body control (WBC) and model predictive control
(MPC) solved with quadratic programming (QP) or differential
dynamic programming (DDP) [4} 9] [24, 32]] provide provable
constraint satisfaction and explicit modeling of contact dynam-
ics for robust and interpretable avoidance behavior. Modern
algorithmic and computation speedups (GPU-parallelization
[14], Moore’s law) have made the real-time deployment of
such control methods on complex humanoid robots increas-
ingly tractable.

However, these approaches are still beholden to increasing
task complexity and modeling, which can quickly render
online control infeasible. When an obstacle approaches at high
velocity, violating potentially dozens of collision constraints,
the time between detection and impact may be insufficient for
trajectory re-planning and constraint resolution. As such, no
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Fig. 1: Humans react to quickly-moving dynamic obstacles with
agility, coordination, and subconscious reflexes. Can robots equipped
with similar whole-body sensing suites do the same?

method has been demonstrated yet for avoidance of a single
high-velocity, direct-impact obstacle, let alone multiple and
successive obstacles, requiring a drastic body reconfiguration
within tens or hundreds of milliseconds.

This limitation motivates our primary research inquiry: Can
humanoid robots leverage Reinforcement Learning to synthe-
size robust, reflexive whole-body avoidance behaviors directly
from distributed Time-of-Flight (ToF) and capacitive sensing
data, thereby bypassing the latency of online modeling?

The fundamental challenge lies in the trade-off between
reactivity and safety guarantees. Reinforcement learning (RL)
policies cannot provide explicit constraint satisfaction, but
by offloading learning of complex sensorimotor control to
offline, simulated interactions, they can provide rapid and
fluent reactions. By directly optimizing for cumulative reward
through repeated interaction, RL policies can discover non-
intuitive motor strategies that exploit the full operational space
of the robot. Unlike supervised or imitation learning, which
require difficult or impossible to collect expert demonstrations
of evasive maneuvers, RL naturally handles the exploration-
exploitation trade-off inherent in collision avoidance. Thus,
with RL, robots can learn a robust representation mapping
numerous diverse and noisy sensor observations to dynamic
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and reflexive actions through task-driven optimization [37} 35l

We propose leveraging deep reinforcement learning to train
whole-body collision avoidance policies on humanoid robots
equipped with distributed proximity sensing skins. Specifi-
cally, we investigate:

1. Body-centric proximity sensing efficacy: How can
body-centric proximity sensing leveraging short-range
CAP and long range ToF sensors enable dynamic and
reactive collision avoidance?

2. Learned vs. analytical control: How do learned reflex
policies compare to optimal control baselines in terms
of collision avoidance rate, stability, and generalization
to novel obstacle trajectories?

3. Reward Design: How can we structure a reward func-
tion to balance the competing objectives of aggressive
collision avoidance and bipedal stability, while regular-
izing for natural, human-like motion patterns?

4. Sim-to-real transferability: Can policies trained in
simulation with simplified sensor models transfer to
physical capacitive and ToF proximity sensing?

II. RELATED WORKS
A. Whole-Body Control via Optimization

Model predictive control has become a common approach
for whole-body control of legged robots. MuJoCo MPC
(MJPC) [I10] provides a practical sampling-based implemen-
tation that combines trajectory optimization with contact-
rich dynamics. The framework uses iterative linear-quadratic
regulator (iLQR and iLQG) methods with finite-difference
derivatives, enabling real-time operation at 20-50Hz on mod-
ern hardware. More recent work has demonstrated MPC on the
torque-controlled Unitree H1 humanoid [36], showing robust
locomotion and manipulation capabilities.

Alternative approaches use analytical derivatives through
rigid-body dynamics libraries like Pinocchio [2]. Crocod-
dyl [21] builds on this foundation to provide differential
dynamic programming (DDP) with explicit contact models.
These methods offer faster convergence through exact gradi-
ents, though they require more careful contact model speci-
fication and may be less robust to model mismatch learning
methods. Furthermore, recent methods from Armleder et al.
[1] which leverage whole-body skin for control and collision-
avoidance only evaluate slow-moving (0.2 ms~!) obstacles
moving toward auxiliary limbs like the arm. The proposed
method also requires hand-designed parameters for each task
and specifically highlights that aggressive parameters for large
reactions can cause hysteresis—rapid, unstable constraint ac-
tivations and deactivations.

B. Reinforcement Learning for Locomotion and Manipulation

Reinforcement learning (RL) has been successfully applied
to achieve stable locomotion in quadrupeds [[12} 18] and in
humanoids [7]. Compared to classical optimal-control-problem
(OCP) based controllers, which must solve high-dimensional
trajectory optimizations online - inducing significant latency

and exhibiting sensitivity to modeling errors [23, [33]. RL-
trained policies learn end-to-end control mappings offline and
execute in constant time via a single network inference [29, [8]].
Low-latency RL policies have enabled agile and rapid whole-
body control, but primarily in contact-free balance at the
extremes of kinematic range of motion [37] or in dynamic
single-contact reconfiguration (parkour) [35l].

C. Hybrid and Residual RL architectures.

Combining control with learning has been increasingly
popular. Residual reinforcement learning can refine MPC
[3, 14} [11] or WBC [20] by learning corrective actions. Others
embed MPC as a module inside a learned policy or meta-learn
MPC hyperparameters [28]]. Hierarchical control frameworks
also decompose stabilization vs manipulation layers (e.g. bal-
ancing vs end-effector control) to handle complexity [38 [13].

D. Egocentric Sensing

Onboard sensors need to detect incoming impacts quickly
and provide adequate sensing coverage for fast-pace collision
avoidance [26]]. Contact and proximity sensors distributed
over the body of the robot (ego-centric) have advantages
over cameras regarding data efficiency and sensing coverage
of the close, pre-contact space around a robot. Additionally,
recent works have found that ego-centric placement of sensors
increased the performance of learned policies compared to ex-
ocentric placement [34,[16]], and works which pair such control
methods with whole-body distributed proximity sensing [25} 1]
have proven effective for dynamic obstacle avoidance. Our
study investigates the impact of egocentric sensing coverage
on performance for reactive collision avoidance policies.

E. Gap and Contribution

Sensor modeling, simulation, and data representation are the
fundamental challenges central to effective policy learning.
Appropriately capturing and utilizing proximity data (across
capacitive, ToF, and LIDAR sensors) has been explored across
robot embodiments [5], but remains an open-ended challenge
for bipedal whole-body control. High-velocity obstacle avoid-
ance poses additional problems of proximity sensor distance
resolution, measuring instantaneous velocity, or tracking ob-
stacles across measurements, all of which can limit high-
bandwidth anticipatory reflexes.

In our setting, we primarily compare policies achieved
via end-to-end RL vs. MPC, and we do an initial study on
trajectory-guided RL with MPC reference trajectories. We
observe that MPC produces feasible avoidance behaviors but
often fails to handle long-range proximity feedback or to
maintain balance, and that trajectory-guided RL baseline per-
forms very poorly with an initial, small collection of reference
trajectories. The end-to-end RL in comparison demonstrates
robustness, emergent avoidance behaviors inaccessible by op-
timal control methods, and quick, sample-efficient training.
Our contributions are a) Bullet Time, an end-to-end humanoid
RL architecture that integrates onboard sensors for high-
speed collision avoidance, b) an evaluation on the emergent
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Fig. 2: Control Architecture. The policy network fuses history-
stacked proprioceptive and exteroceptive (Capacitive/ToF) observa-
tions to output target joint positions. A PD controller converts these
targets to torques for stable execution.

behaviors when using simulated sensor analogs in various
configurations and sensing ranges, and c¢) comparison with
optimal control baselines with multiple configurations.

III. METHODOLOGY

The objective is to train a reinforcement learning (RL)
policy that enables the Unitree H12 humanoid robot to perform
rapid, stable evasive maneuvers in response to approaching
obstacles. The policy 7y (at|o;) outputs joint-level commands
to maximize the expected cumulative reward:

T

max E ;fytrt(ot,at) , (1)
where ~y is the discount factor and r; encodes both stability
and safety. Training is conducted using the Proximal Policy
Optimization (PPO) [29] algorithm, chosen for its robustness
and scalability to high-dimensional continuous control.

A. Observation and Action Spaces

Observation Space (O): Each observation o; provides
the policy with the required proprioceptive and exteroceptive
information:

o Proprioceptive states: Joint positions and velocities,
base angular velocity, and the gravity vector projected in
the base frame to estimate torso orientation and stability.

o Exteroceptive states:

1. Capacitive proximity sensors (0-15cm range) dis-
tributed across the torso and upper limbs, providing
dense local awareness of nearby objects.

2. Time-of-Flight (ToF) cone sensor capturing 8x8§
distance readings (64 values) across a 45° forward
field of view up to 4 m.

Action Space (A): The policy outputs target joint positions

q; € R?'. These are converted into motor torques 7; via a
low-level PD controller:

e = Kp(at — a) + Kaldi — d), (2)

where K, and K, are the proportional and derivative gains,
and ¢; is approximated by zero or finite differences. This
action formulation favors compliant, stable motion compared
to direct torque control.

B. Reward Formulation

Designing a reward function for humanoid evasion requires
balancing immediate survival with long-term stability and
motion quality. We formulate the reward r, as a weighted sum
of task objectives (e.g., survival bonus, obstacle clearance) and
regularization terms (e.g., energy efficiency, action smooth-
ness). While the task rewards drive the robot to discover
agile dodging maneuvers, the regularization terms are critical
for suppressing high-frequency jitter and ensuring the learned
behaviors are fluid, energy-efficient, and visually natural. The
precise mathematical formulations, weights, and parameter
values for all reward components are detailed in Appendix
and Table

C. Network Architecture

We adopt an asymmetric actor-critic structure [27] to en-
hance training stability while ensuring deployability. In this
framework, the critic is provided with privileged information
available only during simulation (such as the projectile’s global
position and velocity), while the actor observes only onboard
Sensors.

o The Actor is a Multi-Layer Perceptron (MLP) with two
hidden layers of 32 units each and ELU activations. It
receives only the observation history o;_.; available on
the physical robot.

o The Critic also uses a [32, 32] MLP structure but receives
the privileged simulation states to form a more accurate
value estimate.

The architecture design is ablated in Appendix |[E] and we
choose the normalized configuration. This asymmetry reduces
variance during the learning process without imposing sensing
requirements on the real hardware.

D. Sensor Modeling

The sensor observation vectors are modeled based on real
capacitive and ToF sensors. We assume noiseless measure-
ments of proximity in simulated environments to benchmark
each of the proposed control algorithms.

1) Self-Capacitance Sensors: Proximity data from self-
capacitance sensors (CPS) is modeled in the raw data format
expected from real GenTact-Prox sensors using an analytically
derived analog [17]. A CPS measures the electrostatic potential
between an electrode and reference ground. For an array of
n ideal CPSs, the capacitance is defined by the Maxwell
capacitance matrix as the relation of charges ¢ and potentials
¢ on the electrodes as follows [26} 131]]:

Cia —Cha
q=C¢= : K
—Cin Cnn
where C is positive semi-definite, ¢ = [q1,q2, .., qa]T, ¢ =

[f1, 2, .., Pn] T, and the off-diagonal elements C; ; represent
the mutual capacitance between electrodes ¢ and j. The
observation of the array of CPSs z is the effective capacitive



measurements at a given timestep, defined as the sum of self-
capacitance and mutual capacitance terms z; = 17¢;, where
2 = [21, %2, ..., zn| L. The observation vector can be extracted
directly from a CPS by measuring the time At it takes to
charge an RC circuit (measured in clock cycles) with known
resistance R;:

(real) _ —At

! nfR;log(1/2)
where n is the number of samples and f is the clock frequency
of the sensor [6]. If the Maxwell capacitance matrix and object

positions are known in simulation, the simulated observation
vector can be derived using a parallel plate assumption:

S
i#]

where « is a vector of dynamic parameters associated with
the permittivity and overlapping surface area of a detected
object. The raw capacitance measurements can be simulated
by through a digital twin of the distributed sensors that respects
design parameters such as resistance and mutual coupling [17].
The CPS observation space is a 1D 1 x s vector, where s is
the total number of distributed sensors on the robot.

2) Time of Flight Sensing: We will simulate time of flight
(ToF) sensors that observe distance measurements along a
directional vector. We will model the SparkFun VL53L5CX
ToF Imager as a depth camera with 8x8 resolution and a 45°
field of view (FoV). As specified in the sensor’s datasheet,
each individual directional depth measurement will output in
the following observation, where d is the true distance:

0, d<0.02mord>4m
zi=<dEx15mm 0.02<d<0.2m
d+0.05d 02<d<4m

The ToF observation space is a 1D 1 x 64s vector.

We additionally test a combination of CPS and ToF sensors,
which observe a 1 x 65s vector.

E. MPC based Whole-Body Control

To establish a performance benchmark grounded in analyt-
ical methods, we implement a MPC policy in Mujoco MPC
(MJPC) [10]. At each control timestep, the planner solves a
trajectory optimization problem over a finite-horizon 7":

T
min Z c(xe, ut) 3)
wo:T
t=0
subject to dynamics z;41 = f(x¢, ug, At), where xy € R
is the state (positions and velocities), u; € R™* is the control
(joint torques or position targets), and c¢(+) is the running cost
over the finite horizon.
The base cost is defined as:

M
lx,u) = sz -n;(r;(x,u)) 4)
i=0

Where the base cost is a sum of M terms, each comprising
of a tunable weight w € R, a twice-differentiable norm
function n(-), and residual terms r € RP. Each residual r;
captures a specific objective (e.g., reaching a target, maintain-
ing balance, minimizing control effort). The weights w; are
tuned to trade off competing objectives.

For this collision avoidance task, we establish the base task
to be “standing,” adopted from HumanoidBench [30, 22]. We
adopt the base residual cost terms, described in App. G| and
add two simple repulsive cost terms: 1) Cprox,i, @ n-dimension
CPS/ToF reading, normalized by the configured sensing range
(Eqn. , and 2) ccom, 2-dimension (z,y) distance between
the robot center of mass and the estimated obstacle centroid,
determined from the weighted average positions of active
sensors (Eqn.[6). For policies using both CPS and ToF sensing,
we use four cost terms, two for each sensing modality, and
weigh CPS costs doubly compared to ToF sensing. More
sophisticated cost design is beyond the scope of this project.

1— -4 if d; < rpa
i = T'max - 5
Gprox, {O otherwise ®)

where d; is the distance from sensor 7 to the obstacle and
Tmax 18 the configured sensing range. This cost encourages
the robot to maintain distance from detected obstacles, with
stronger penalties for closer proximity.

HpCoM - pobs||2

CCoM = (dCOM - ddes) : (6)
where pcov € R? is the robot’s center of mass position in
the xy-plane, pops is the weighted centroid of active sensor
detections, dcoMm = ||PcoM — Pobs||2, and dges = 0.2 m is
the desired offset distance. This 2-dimensional cost guides the
center of mass away from the estimated obstacle position.

We use the iLQR algorithm [19] to evaluate multiple candi-
date control trajectories u in parallel with forward differencing
(for greater detail, refer to [10]) over a finite horizon T of
s, producing a control trajectory ug.r which is executed
in a receding horizon fashion. MJPC is exclusively CPU-
dependent, and we run all experiments on an AMD Ryzen
3700x CPU at 5% simulation speed.

F. Residual RL

Residual reinforcement learning combines the stability and
interpretability of model-based control with the adaptability
and optimality of learned policies [3} [14) 20} [1S5]. We imple-
ment a reference-tracking “residual” RL policy which learns to
track MPC generated trajectories a!*" and the underlying avoid-
ance task under domain randomization, perturbation, [20].
The best performing policy achieved poor tracking accuracy
(average of 45% joint position tracking error) and collision
avoidance (4% avoidance). Initial exploration shows partial
model collapse with the policy performing only a few, low-
action-magnitude evasive behaviors. Investigating and improv-
ing this poor performance is beyond this submission’s scope,
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Fig. 3: Experimental results comparing sensor configurations. (a) Collision avoidance success rates across varying sensing ranges (n=100
trials each). Capacitance-only MPC achieves the best avoidance of 31% at a sensing range of 0.25 m. All sensor configurations except ToF
alone perform worse at longer ranges, though capacitance normalization improves viable range. (a) Action smoothness measured by L2 norm
of joint position changes. ToF signals are denser and earlier, disrupting the base standing policy and reducing success.

so we omit it from our results and provide the architectural
details and discussion in App. [H]

IV. EXPERIMENTS AND RESULTS

We compare our learned RL policies against MPC in an
obstacle avoidance task as our primary baseline.

A. Obstacle Avoidance Task

We launch obstacles with randomly generated trajectories to
train and quantify the performance of our obstacle avoidance
agent. Each projectile is 30 cm in diameter, weighs 100 g (see
section [F), and launched with an initial velocity between 4-6
m/s at a sampled joint on the robot. Only one projectile is
launched at the robot per episode and starts from a random
position between 2-3 m away from the robot’s center. Success
is defined as the percentage of agents that successfully avoid
the launched projectile and maintain an upright standing
posture until episode termination.

1) MPC Evaluation: Our MPC baseline follows the setup
described in section We evaluate four sensor configu-
rations in Fig. [3] on the same 100 obstacle trajectories: CPS
sensing, ToF sensing, combined CPS and ToF sensing, and un-
normalized CPS sensing across sensing ranges of: {0.1, 0.15,
0.20, 0.25, 0.50, 1, 2, 4}m. As shown in capacitance-only
MPC achieves the best avoidance overall of 31% at a sensing
range of 0.25m, 23% at a realistic sensing range of 0.15m,
and an average of 15.4% across all ranges. ToF sensing alone
achieves its best avoidance of 11% at a sensing range of 1m,
combined CPS and ToF sensing has its best avoidance of 25%
at arange of 0.15m, and the unnormalized CPS policy achieves
27% at a range of 0.2m. All sensor configurations perform
worse as range increases, though capacitance normalization
improves viable range. This is due to the simple MPC cost
design: with greater sensing ranges, the controller receives
proximity feedback even when the obstacle is quite far away.

Rather than executing large-action-magnitude avoidance
motions when an obstacle is near-collision, such as in the CPS-
only policies, the robot with long-range proximity sensing per-
forms lower action-magnitude avoidance motions much earlier

and continuously. These avoidance motions often conflict
with standing costs (posture, height, balance) and MPC often
struggles to optimize these conflicting costs for prolonged
durations, leading to degenerate behaviors that are not able
to avoid the obstacle when it is actually near and almost
always lead to a fallen posture. This is evidenced by the
fact that combining ToF sensing with CPS sensing yields
lower avoidance success than the CPS policy alone and more
empirically in Fig. 3b] and [7] in which we show the mean
action magnitude (L2 norm of change in 21 actuated joints)
per sensor configuration over the first 50 and 220 (median
trajectory length) timesteps (0.002s), respectively. Across the
first 220 steps, the respective mean and standard deviation
of action magnitude (u,o) for CPS, ToF, and CPS + ToF
policies are as follows: (0.029, 0.022), (0.056, 0.036), and
(0.039, 0.029). ToF sensing and CPS + ToF sensing policies
result in a 93% and 35% increase in mean action magnitude
with more extreme initial maneuvers relative to a CPS-only
policy; this behavior continually compounds, resulting in an
over-sensitive policy that can neither avoid nor stand well.

2) RL Evaluation: The RL policy was able to learn how
to successfully dodge incoming obstacles using our approach
and achieved a top success rate of 96%. We ablated the
performance by sensor type and range and achieved the results
seen in fig. ] The best performance was observed when
using CPS sensors with detection ranges greater than 1cm,
reaching success rates above 90% and avoiding termination for
around 170s on average. Additionally, we noticed an increase
in training speed using CPS sensors compared to ToF sensors,
where a policy would only require < 500 steps to converge
with capacitive sensors, ~ 1000 steps for ToF sensors, and
~ 1700 steps with a combination of both. Although the
CPS range surpasses its practical sensor limitations, it reveals
that the lower dimensional relative distance measurements
from CPS’s (which are orientation agnostic) may be more
practically efficient for obstacle avoidance than the dense,
orientation locked relative distance measurements from ToF
sensors. Since ToF sensors were anticipated to perform better
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d) The accumulated reward of each trial.

at longer distances, we only varied the CPS sensing range
when using a combination of both and kept the ToF range
at 4.0 m. Although neither CPS or ToF sensors performed
particularly well in ranges under 1 m range, training agents on
a combination of both achieved success rates greater than 75%
in the 0.15-0.5 m CPS sensing range. CPS sensors reliably
detect objects under 0.15 m in practice, so a combination of
capacitive and ToF sensors may be the optimal coverage for
deploying the policy on a real robot.

B. Discussion

One interpretation of the RL results compared to MPC is
that the RL policy strongly benefits from having information
about the incoming projectile far in advance whereas MPC
is advantageous in quick, reactive motions. The RL policy
commonly learned multi-step motions such as planting its
feet in an advantaged positions to jump out of the way,
whereas MPC would generate highly unstable reactions if
it avoided the obstacle too early. These results support our
original hypothesis that the RL agent learned fluent motions
that are difficult to describe using optimal control constraints.
Although both control methods have strengths at different
sensing ranges, they both suffered in performance when using
ToF sensing compared to capacitive sensing.

V. CONCLUSION

a) Future Work: A potential limitation of the ToF sensors
may have been that information was too densely reported,
slowing down the training speed and quality of the agent for
the RL policy. Future work should include methods to process
egocentric proximity data prior to being passed into the RL

model and MPC module to reduce the data size and only
extract necessary features for planning. This may include using
spatially aware convolutions, Kalman filtering, and tracking
temporal data such as rate of measurement changes to better
estimate the state of incoming objects.

Additionally, we hope to explore sensing modalities such
as RGB cameras or LIDAR sensors mounted in a similar
distributed fashion. These sensors capture much denser and
richer detail but also require complex signal processing and
representation methods. Future work should explore the trade-
offs and emergent behaviors of sensors at varying spatial,
temporal resolution.

b) Bridging the Sim-to-Real Gap: The largest and most
imminent goal is to transfer the trained RL policies and ideally
MPC to a real robot. This process entails (non-exhaustive):

o Sensor layout design and fabrication: The sensors used
in this study were randomly generated, however, more
considerations into wiring and deployment are needed.

o Real sensor characterization: This study assumed noise-
less sensors that report distance directly. For real capac-
itive sensors, an accurate distance measurement requires
a well calibrated profile of the parasitic capacitance
between sensors and some preset bias about the detected
obstacle such as material and shape.

o Construction of a safe experiment apparatus: cushioned
cage and floor, ceiling-mounted belay, a configurable and
portable method for obstacle launching
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APPENDIX A
HYPERPARAMETERS & SETTINGS FOR RL

This appendix details the hyperparameters used for the
environment, the PPO algorithm, and the ablation study con-
figuration.

TABLE I: Hyperparameter and Environment Settings

Simulation & Environment

Physics Engine PhysX (Isaac Lab)
Simulation dt 0.0083s (120 Hz)
Control Decimation 2

Control Policy Frequency 60 Hz
Episode Length 3.0s (180 steps)
Num. Environments 4096
Network Architecture (Baseline)
Actor Network MLP [64, 64]
Critic Network MLP [64, 64]
Activation Function ELU
PPO Optimization
Optimizer Adam
Learning Rate 1x1073
Discount Factor (v) 0.99
Clip Range (¢) 0.2
Entropy Coefficient 0.0
Mini-batch Size 4096

APPENDIX B
REWARD FORMULATION

Table [ lists the exact mathematical formulations for the
reward terms defined in the MDP.

APPENDIX C
ABLATION CONFIGURATION

Table |l1l] describes the parameters varied to test the hypothe-
ses regarding network complexity and sensor modality.

APPENDIX D
NEURAL NETWORK ARCHITECTURE ABLATION STUDY

An ablation study was conducted to evaluate five neural
network architectures across four performance metrics. The
tested variants are summarized in Table [Vl

The baseline actor and critic networks consist of two fully-
connected layers with 32 neurons each and ELU activation
(see Appendix [E] for detailed architecture).

TABLE II: Reward Composition and Scaling

Component Expression Weight
Stabilization & Posture

Base Height exp(—5.0(2base — 1.04)?) 10.0
Base Velocity exp(—10.0{|vyy1?) 10.0
Stand Still exp(—100.0]|vzy [1?) 10.0
Alive Bonus 1.0 5.0

Collision Avoidance

Projectile Proximity min;ejinks [[)’i - clip <wp(1 — dd—), Wp, 0)] 1.0

i
max

dmax = 2.0m, wp = —1.0. Multiplier 5; = 3.0 for Lidar, 1.0 otherwise.

Regularization

Joint Acceleration —||Gj||2 —2.5e-7
Action Rate —|las — az_1? —0.005
Joint Limits Soft limit penalty -3.0

TABLE III: Ablation Study Parameters

Default

4.0 m Max detection range
TOF, CAP, Both Active sensor modality
[64, 64] MLP Dimensions

Parameter Description

MAX_RANGE
SENSOR_TYPE
Policy_Hidden

Neural Network Architecture Comparison
Success Rate by Network Architecture Mean Reward by Network Architecture

38.55

3142

Rate
Mean Episode Reward

Agent Survival Rate by Network Architecture Proximity to Projectile by Network Architecture
0.308

0.900

o.169

st Distance (

Stayed Alive Rate

Median Closs

Fig. 5: Architecture comparison

APPENDIX E
NETWORK ARCHITECTURE DETAILS

ActorCritic Network Architecture

Actor MLP:
Linear (in_features 32), ELU
Linear (32 32), ELU
Linear (32 21) # joint position commands



TABLE IV: Neural Network Architecture Variants

Architecture Configuration

Small [16, 16] neurons
Medium 32, 32] neurons
Large 64, 64, 32] neurons

[
[
Normalized [32,32] + obs normalization
HighLR  [32,32] + LR 3.0 x 1073

Critic MLP (asymmetric):
Linear (in_features + priv
Linear (32 32), ELU
Linear (32 1)

32), ELU

The critic network additionally incorporates privileged in-
formation (ground truth state) during training for improved
value estimation.

APPENDIX F
PROJECTILE MASS ABLATION

The trained agents have a tendency to learn a planted, hard
stance when the projectile mass is set too high. Although a
strong stance may be preferable, we found that it negatively
impacts the agent’s training and preference for dodging obsta-
cles as opposed to taking the hit. 100 g produced the strongest
results and was used for this study.

1.0
0.8
0.6

0.4

Success Rate

0.2

=8~ CAP (Proj Mass=0.1)

~#~ CAP (Proj Mass=1.0) = CAP (Proj Mass=10.0)

0.0
0.5 1.0 15 20 25 3.0 35 40
Sensing Max Range (m)

Fig. 6: Performance of the capacitance RL policy when trained on a
variety of projectile masses. A projectile mass of 100 g was chosen
both empirically and by inspection of policy quality.

APPENDIX G
MPC DESIGN

a) Cost Terms:

b) Robot Model: We use the Unitree H12 humanoid
without hands or articulated wrist joints which has 21 con-
trollable joints. The model can be accessed at this |link, with
63 skin sensor sites. We disable five ToF sensor sites with
XML configuration issues and leave re-integration to future
work.

TABLE V: Cost terms and weights for humanoid standing and
obstacle avoidance task in MPC. Standing terms are adopted from
HumanoidBench [30} 22].

Category Term Expression Weight
Standing

Height |Porso — Pgoal 30.0
CoM velocity [Veom,zyll2 10.0
Joint velocity lall2 0.01
Balance lPcp — Psupportll2 10.0
Upright ||Rlorso - Rworld ||F 5.0

Posture lld — dhomel|2 0.03
Foot velocity [ Veeet — Veomll2  0.625
Control |ln — dhomell2 0.1

Obstacle Avoidance

CPS proximity > 00, Core.i (EQ. [5) 200.0

CPS CoM offset ||caiyl2 (Eq. |§|) 100.0

ToF proximity 7%, Ciooxi (Eq.3) 100.0
50.0

ToF CoM offset ||ci\|l2 (Eq. EI)

Action Magnitude Comparison Across Sensor Configurations

— Capacitive
—— ToF
—— Cap + Tof

Action Magnitude (L2 norm of Aqpos)
—

o 50 100 150 200
Timestep

Fig. 7: L2 norm of action (change in 21 actuated joints) over the
first 220 timesteps for each sensor configuration.

c) MPC Parameters.:

o Horizon: 66 timesteps 0.015s timestep = 1s

o Planner: iLQR

o Control rate: 0.002s (500Hz)

o Spline points: 3 (piecewise linear interpolation)

d) Action Magnitude Across First 250 Timesteps: Fig.[]]

APPENDIX H
REFERENCE-TRACKING (RESIDUAL) RL

We adopt a trajectory-guided reinforcement learning ap-
proach inspired by Opt2Skill [20], which leverages model-
based planning to generate high-quality demonstration data
for training reactive policies. Unlike traditional residual RL
methods that execute model-based control online and learn
corrective actions [3]], our approach uses MPC trajectories
purely as training supervision, enabling the learned policy to
operate independently without requiring online optimization at
deployment.

Trajectory Generation. We use MuJoCo MPC to solve the
obstacle avoidance task offline, generating an initial dataset of
25 dynamically feasible reference trajectories. Each trajectory


https://github.com/correlllab/h1_mujoco/blob/main/unitree_robots/h1_2/h12_tof.xml

includes time-indexed sequences of joint positions !, veloc-

ities ¢, base velocities vi*', and obstacle states. We augment
these trajectories 100x by sampling new obstacle trajectories
that constitute a valid, avoided obstacle: it comes within the
sensing range of any sensor and does not collide at any point
in the trajectory. These trajectories are stored in a database and
randomly sampled during training to provide varied obstacle
approach scenarios.

Policy Architecture. The learned policy my directly outputs
joint-level actions without relying on MPC at execution time.
Following asymmetric actor-critic design, the actor observes
realistic onboard sensor data:

o Proprioception: IMU orientation, joint positions/veloci-

ties, action history

« Exteroception: Capacitive skin sensor readings (63 sites),

obstacle centroid estimated from capacitance spatial dis-
tribution

« Reference trajectory: Target joint positions ', velocities

¢, and base velocities vi°' at the current timestep

The critic additionally receives privileged information un-
available during deployment: precise obstacle position, veloc-
ity, and ground-truth collision states. This asymmetry enables
more stable value estimation while ensuring the policy remains
deployable with only onboard sensing.

Reward Function. The reward combines trajectory tracking
objectives with safety and regularization terms:

Tt = Wpos * Tpos(qty q;ef) + Wyel - Tvel(Qtv qff) - (N

Trajectory tracking

Weol * Leoltision + Wreg * ||at||2 ®)

Safety & regularization

where 7,05 and 7y are exponential tracking rewards that
encourage the policy to follow the reference trajectory, while
collision penalties and action regularization maintain safety
margins. After the reference trajectory completes, recovery
rewards encourage the robot to return to a stable standing
configuration.

Training We train policies following Opt2Skill: PPO op-
timization, 300 million steps, and 4-layer MLPs [512, 512,
256, 256] for both actor and critic. Training one policy takes
approximately 30 minutes on a NVIDIA RTX4070.

This formulation ideally enables the policy to learn obstacle
avoidance behaviors from MPC demonstrations while devel-
oping reactive responses based on real-time capacitive sensing,
combining the motion quality of model-based planning with
the adaptability of learned control. However, since only 25
original trajectories are tracked, this extreme data scarcity
most likely led to poor data performance, as resulting policies
had fairly uniform, non-diverse motions. Opt2Skill generates
2000 trajectories per skill (walking, leaning and pushing, box
pick-up), and the avoidance task inherently has more diverse
motions than those skills. Likely >>2000 high-quality trajec-
tories may be required to learn robust avoidance behavior. The
code for the MuJoCo Playground policy training is available
at this [link.


https://github.com/badinkajink/mujoco_playground/tree/main/mujoco_playground/_src/locomotion/h12_skin
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