
LTL Planning for Quadcopter Reconnaissance in Densely Populated
Environments

Carson Kohlbrenner, Nolan Stevenson

1) Link to full video of simulated mission here.
2) Link to GitHub repository here.

I. PROJECT SCOPE

Our project goal was to leverage our knowledge of the-
oretical temporal motion planning into a realistic system
with kinodynamic constraints and error. Before starting this
project, our team had no experience using open-source
toolboxes such as OMPL, Gazebo, ArduPilot, or ROS.
However, these are fundamental and widely used software
packages that bridge the gap between theory and application.
Thus, throughout this project, we explored how to use these
software packages to simulate a theoretical motion plan, and
through this learn how to incorporate motion planning into
real systems. Our project goals were as follows:

1) Develop an LTL planner using OMPL.
2) Simulate quadcopter dynamics and sensors using Ar-

duCopter autopilot in Gazebo.
3) Autonomously command pathing waypoints to a quad-

copter using ROS.
We were able to successfully meet all of these project goals
by solving a quadcopter search and rescue problem in a
densely populated forest.

II. INTRODUCTION

Search and rescue scenarios often occur in densely pop-
ulated forests where searching for multiple targets on foot
can be timely and expensive. With this as our motivation,
we present a solution where a remote operator can input a
satellite image and then mark regions of interest to search
and a specified order to search those regions. A quadcopter
motion plan is then automatically generated which visits all
necessary regions while avoiding obstacles. This motion plan
could then be commanded into a autonomous drone capable
of scouting the desired regions quickly and efficiently.

For the motion planner, we decided to use linear temporal
logic (LTL) due to its advantages in handling multiple desired
goal states over time. LTL is supported by the Open Motion
Planning Library (OMPL), so we used this library as the
foundation of our planner [1]. To simulate the quadcopter
dynamics and sensors we used the open-source platform
ArduCopter [2]. This software is typically built directly
into commercially available flight controllers through the
Pixhawk platform [3]. To communicate between the LTL
motion plan and the ArduCopter autopilot, we will be using

All authors are with the University of Colorado Boulder, 1111 Engineer-
ing Drive, Boulder, CO USA. name.surname@colorado.edu.

Fig. 1: Using LTL in OMPL, Gazebo, ArduPilot, ROS, and
OpenCV, we plan a path for a quadcopter drone to visit multiple
points of interest for reconnaissance, scanning, and search and
rescue. We demonstrate this using a simulated forest environment
where the quadcopter must avoid collisions with trees and other
obstacles.

the Robotics Operating Systems (ROS) as this is one of the
most common communication protocols for an autonomous
drone [4]. To verify our results, we simulated the drone’s
hardware using the open-source physics engine Gazebo to
visualize the quadcopter’s path throughout the mission [5].

III. LTL PLANNING IN OMPL

The LTL planner we developed for this project generated
a series of waypoints for the quadcopter to visit, including
selected regions of interest in order of priority. Although
the quadcopter’s flight will be simulated in SE(3), we
constrained this problem to SE(2) by specifying a constant
altitude of 3.5 meters for the quadcopter to fly at. The bene-
fit of using OMPL as the backbone of our LTL planner is that
it already contains a synergistic planner that will solve paths
for a specified deterministic finite automata (DFA), abstrac-
tion graph, and low-level planner. We decided that a grid-
based abstraction level, which breaks the workspace up into
discrete square cells, most intuitively encompasses the ability
of a remote operator to select regions of interest. To set up
this abstraction layer, we created a new decomposition class,
called MyPropositionalDecomposition that inher-
its from OMPL’s PropositionalDecomposition and
GridDecomposition classes. In our custom class, we

https://www.youtube.com/watch?v=m26Y-9Ag40A
https://github.com/cKohl10/Drone_LTL_Planner


(a) (b)

Fig. 2: Satellite images can be used for finding the mission bounds
and obstacles to avoid. a) Sample satellite image of a forest [7] b)
Conversion of the original image where white signifies the mission
zone, black is a no-fly zone, and the green dots are regions of
interest denoted as p1, p2, p3 in order of priority.

can specify the bounds, dimensions, and number of grid cells
of the workspace. After defining the size of the workspace,
the custom class assigns a unique Region ID (RID) to each
cell.

A. Image to Workspace

We wanted the remote operator to be able to input an im-
age of the search area, whether it came from a quadcopter or
satellite, and quickly get a scoped workspace with obstacles.
For this project, we manually converted a satellite image to
a monochrome format where black regions indicate the loca-
tions of trees. Fig. 2 demonstrates the process of converting a
satellite image to a workspace. For computational purposes,
we used a simplified lower resolution version of Fig. 2 as
shown in Fig. 3 for the remainder of this project. To convert
the forest image as seen in Fig. 3 to a usable workspace,
we passed in the monochrome image as an OpenCV Mat
object to the planner [6]. The planner then read pixel data
about the image and adjusted the workspace grid to have as
many grid cells as pixels. Next, it calls Algorithm 1 to read
each pixel’s color value in the range of 0 − 255 where 0
is black and 255 is white. If any pixel has a color reading
below 250, the pixel’s associated RID is stored as an obstacle
in the MyPropositionalDecomposition object’s RID
list. This RID can then be used to check for collisions when
propagating the low level planner.

B. Abstraction and Deterministic Finite Automata

Similar to how the obstacles are assigned, regions of
interest, or propositions, were also kept track of in a list
in the MyPropositionalDecomposition object. The
user has to specify RIDs for the quadcopter to visit and they
get wrapped and assigned to a proposition pm where m is
the number of propositions at the time of assignment. To
keep the automata co-safe, the LTL function was described
in sequential order as followed and takes the form of Fig. 8.

F (ptakeoff ∧ F (p1 ∧ F (p2 ∧ ...F (pm ∧ F (pland))))) (1)

This says that the quadcopter shall eventually takeoff,
visit each of the regions of interest in order or prioirty, and
land in that order. The product of the automata in Fig. 8

Fig. 3: Conversion between a greyscale image to a motion plan.
Note, additionally randomly-distributed obstacles were added in
post process to increase the path planning complexity.

and the abstraction grid layer linked to the propositions
was then produced using a built-in OMPL ProductGraph
constructor where it is ready for motion planning using the
built-in SyCLoP planning scheme.

C. Low Level Planner

The low-level planner chosen for this project was RRT due
to its ability to quickly converge to a goal. The idea behind
the LTL planner is to be agnostic to multiple quadcopter
configurations, so calculating for kinodynamic constraints in
the low-level planner would have been restricting. Instead,
we specify a controlled yaw limit of ±π

8 radians when
propagating the tree to avoid sudden turns. Additionally,
without incorporating the dynamics of the quadcopter into
the motion planning, we needed to implement additional
safety measures to ensure the quadcopter won’t collide
with the environment during simulation. The size of the
workspace used in this paper was 100×100m2. Thus, we can
assume with reasonable confidence that a small quadcopter’s
dynamic constraints will cause only small deviations from
the specified path due to the scale of the path. To combat
this deviation, we implemented a conservative configuration
space restriction by taking the Minkowski difference of the
obstacles and quadcopter, assuming that the quadcopter was
the size of a full grid space (11.1m2 in this case). This
resulted in a path that allowed for slight deviations. Fig. 3
demonstrates an example of an RRT sampled path created
by the low-level planner using the bounds of a simplified
satellite image.

A limiting factor of the RRT-generated path is that mul-
tiple waypoints would frequently appear clumped to each
other. Due to the nature of the flight controller as explained in
Section IV, clumped waypoints would cause the quadcopter
to make sharp, jagged movements and frequent stops. To
solve this problem, we implemented Algorithm 2, a waypoint
region fit algorithm that iterates through a path and removes
waypoints in the same grid cell as the previous waypoint.
This function more than halved the number of waypoints of
the path shown in Fig. 3 (197→ 94 waypoints). This allowed
the quadcopter to motion plan through fewer waypoints
which allowed a smoother, more continuous path without
sacrificing visiting regions of interest. The effect of this
algorithm on the RRT generated path can be seen in Fig. 6



Fig. 4: Flowchart of interactivity between ArduCopter and Gazebo.
A commanded waypoint is sent to ArduCopter and converted to
flight controls before being sent to the drone in gazebo.

IV. QUADCOPTER DYNAMICS USING ARDUCOPTER IN
GAZEBO

To incorporate and simulate quadcopter kinodynamic con-
straints, we utilized a physics engine coupled with an au-
topilot software. The physics engine we used was Gazebo, a
widely used advanced robot simulator capable of emulating
physical collisions, sensor error, and more. The autopilot
software we used was ArduPilot Copter (ArduCopter), an
open-source multicopter UAV controller and simulator. These
software applications can be coupled together using a com-
munication protocol called MAVLink, micro air vehicle link,
a protocol for translating inertial commands into vehicle
thrust commands [8].

To implement a quadcopter representation in the Gazebo
environment, we utilized the 3DR Iris Quadrotor Gazebo
model file produced by PX4 autopilot [9]. By importing
this model into a empty Gazebo world file, we were able
to generate a visual representation of a quadcopter.

Our next step was to establish a MAVLink connection
between the quadcopter and an emulated firmware onboard
the quadcopter. To do this, the ArduCopter firmware was
incorporated as a plugin to the Gazebo model file. This
then allowed the ArduCopter firmware to start upon Gazebo
simulation startup. We were then able to connect to the
firmware by establishing a MAVLink connection with the
ArduCopter plugin. This allowed the ArduCopter software
to access the physics and sensors present in the Gazebo
simulation. By making this connection between softwares,
the ArduCopter autopilot was no longer running on perfect
sensor data and was instead using realistic data collected
from IMU and GPS systems within the Gazebo simulation.
This fulfills the goal of this project, which is to simulate a
realistic system completing a motion planning problem.

To fly the quadcopter in Gazebo, MAVLink commands
were sent to MAVProxy to control the quadcopter to com-
manded inertial waypoints. MAVProxy software is able to
communicate directly with the ArduCopter flight controls
through an abstraction layer to fly the quadcopter. The ab-
straction layer leverages the physical stats of the quadcopter
to translate the commanded waypoint to a commanded set
of motor torques. A flowchart depicting this relationship can
be seen in Fig. 4. This protocol established the baseline

Fig. 5: Flow chart for autonomous control of quadcopter

for how we were able to control a quadcopter in a Gazebo
environment to follow a waypoint path.

V. ROS COMMUNICATION BETWEEN PLANNER AND
ARDUCOPTER FOR AUTONOMOUS COMMAND

To autonomously control the quadcopter in the Gazebo
simulation, we utilized a combination of open-source quad-
copter functions and custom functions to create a Guidance,
Navigation, and Control (GNC) script to iteratively feed the
autopilot inertial x, y, and yaw commands throughout the
mission [10]. In our custom GNC function, we specified
[x, y, ψ] waypoints for the quadcopter to fly to. Once the
quadcopter was within a specified 1.5 meters (approximately
half a grid space) ϵ tolerance of a waypoint in the list, a
new waypoint was commanded. Additionally, we wanted to
have the quadcopter’s front-facing camera see the regions of
interest upon approach, so we command the desired yaw of
the quadcopter to always point the camera in the direction of
quadcopter motion. This was an iterative process that kept
feeding in new waypoints to the quadcopter until it was
finally commanded to land.

In order to identify when the quadcopter is within a
certain tolerance of an inertial waypoint, the state data of the
quadcopter’s position in Gazebo must be examined. Using
MAVROS, a ROS plugin that we ran alongside ArduCopter,
we were able to continuously publish the output state estima-
tion of the quadcopter. Then, the state estimate from the GPS
and IMU data was leveraged by the GNC script to decide
when a waypoint is reached and motion plan through the
waypoint path.

To prompt the ArduCopter autopilot with waypoints,
MAVROS was used to send commands to MAVProxy which
could directly control the ArduCopter controls. Using this
method, we bypassed the need for manual inputs and au-
tonomously commanded from a set of waypoints stored in a
sequential list from the LTL planner. The flowchart for this
process can be seen in Fig. 5.

VI. RESULTS

To visualize the results, we created a Gazebo world
environment that matched the example image used by the



(a)

(b)

Fig. 6: a) Simulated flight path comparing the original RRT path planned with LTL to the waypoint fixed graph restricting waypoints
to grid spaces and the final simulated path with quadcopter dynamics. b) Visualization of the simulated drone reaching the regions of
interest.

(a) (b)

Fig. 7: a) Monochrome satellite image. b) Gazebo replica of satellite
image.

LTL planner (see Fig. 7. This was done by applying the
image as a texture on the ground model in Gazebo. Then,
tree obstacles were placed over all black regions, and regions
of interest were placed in the green regions from Fig. 3.
Specifically, a human was placed in interest region one, a
jeep was placed in interest region two, and an ambulance
was placed in interest region three. The resulting Gazebo
world file can be seen in Fig. 7 This allowed us to validate
that the quadcopter did indeed go to all regions of interest
before landing.

With the world file complete, the mission was simulated
using the software flow down described in Fig. 5. The
resulting path can be seen in Fig. 6 and the resulting video
can be seen here. The quadrotor was able to successfully
reach each region of interest in the 10, 000 m2 area without

https://www.youtube.com/watch?v=m26Y-9Ag40A


colliding with obstacles in 2 minutes and 9 seconds. Fig. 6
shows the final full path of the mission.

Analyzing the results, the simulated path of the quadcopter
is much smoother than the original RRT and the waypoint
fit path. Through testing, we found that a larger tolerance
increased the speed and smoothness of the quadcopter’s path;
making the motion of the quadcopter appear more realistic to
human command. However, greater waypoint tolerances al-
lowed the quadcopter to vary more from the calculated path,
which could be an issue in highly contested environments.
Because we applied the constraint that neighboring cells of
obstacles are also obstacles to the low-level LTL planner, our
quadcopter is still able to avoid obstacles and complete the
mission while smoothing the path.

VII. CONCLUSION

In conclusion, our project set out to leverage motion
planning theory into a realistic system with kinodynamic
constraints and error. Despite our initial lack of experience
with open-source toolboxes such as OMPL, Gazebo, Ar-
duCopter, and ROS, we successfully achieved our project
goals.

Our approach addressed a significant real-world problem
by employing a quadcopter with path-planning capabilities
for search and rescue scenarios in densely populated forests.
Utilizing linear temporal logic (LTL) and the Open Motion
Planning Library (OMPL), we generated a series of way-
points for the drone, prioritizing specific regions of interest
while avoiding obstacles.

The integration of ArduCopter in Gazebo provided a
realistic simulation environment for quadcopter kinodynamic
constraints, and the use of ROS facilitated communication
between the LTL planner and the ArduCopter autopilot,
enabling autonomous control. By incorporating open-source
tools and custom functions, we successfully demonstrated the
feasibility of our system in a simulated forest environment.

Our results showcased the effectiveness of the system,
as the quadcopter followed the planned path, visiting mul-
tiple points of interest for reconnaissance, scanning, and
search and rescue without collisions. The smoother trajectory
achieved through tolerance adjustments enhanced the realism
of the quadcopter’s motion while the extra safety factor on
the LTL low-level planner ensured obstacle avoidance.

In summary, our project not only achieved its goals but
also demonstrated the potential of integrating motion plan-
ning theory into practical applications, highlighting the value
of open-source tools in bridging the gap between theoretical
concepts and real-world implementation. This work opens
avenues for further exploration and development in the field
of autonomous systems for complex scenarios like search
and rescue missions.

REFERENCES

[1] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012.

[2] “Arducopter,” https://ardupilot.org/copter/, [Software].

[3] “Pixhawk flight controller,” https://pixhawk.org/, [Online; accessed
December 2023].

[4] “Robotics operating system (ros),” https://www.ros.org/, [Software].
[5] “Gazebo,” http://gazebosim.org, [Software].
[6] “Opencv library,” https://opencv.org/, [Software].
[7] “Google earth satellite image,” https://earth.google.com/web/@39.14882051,-

107.74775177,3184.25387738a,1433.65263345d,35y,0h,0t,0r/data=OgMKATA,
[Online; accessed December 2023].

[8] “Mavlink communications software,” [Software].
[9] “Iris gazebo model,” [Software].

[10] “Basic gazebo gnc tutorials,” https://github.com/Intelligent-Quads,
[Online; accessed December 2023].

[11] “Spot ltl visualizer,” https://spot.lre.epita.fr/, [Online; accessed Decem-
ber 2023].

https://ardupilot.org/copter/
https://pixhawk.org/
https://www.ros.org/
http://gazebosim.org
https://opencv.org/
https://github.com/Intelligent-Quads
https://spot.lre.epita.fr/


APPENDIX

A. Figures:

Fig. 8: Deterministic Finite Büchi Automata for taking off, visiting three regions interest, and landing [11].

B. Algorithms:

Algorithm 1 Add Obstacles from Image

1: procedure ADDIMAGEOBSTACLES(MyPropositionalDecomposition, image)
2: for i← 0 to image.rows do
3: for j ← 0 to image.cols do
4: if image(i, j).color < 250 then ▷ Pixel is not white
5: xcoord ← i/image.cols
6: ycoord ← j/image.rows
7: rid← RID at location (xcoord, ycoord) ▷ Get the region ID
8: if rid = start state or neighbor of start state then
9: Continue

10: else
11: Add obstacle to MyPropositionalDecomposition object
12: end if
13: end if
14: end for
15: end for
16: end procedure



Algorithm 2 Fit Path Points to Grid

1: procedure GRIDFIT(decomp, boundMax, gridLength, stateSpace)
2: previousRegionID ← −1
3: previousCoordinates← [0, 0]
4: previousDirection← [−10, 10]
5: repeatCount← 0
6: Open ”pathGrid.txt” for writing as outputF ile
7: Open ”pathRaw.txt” for reading as inputF ile
8: while there are lines in inputF ile do
9: Read a line from inputF ile and split into xStr, yStr, yawStr

10: Convert xStr, yStr, yawStr to doubles: x, y, yaw
11: Create a new state in stateSpace with x, y, yaw
12: regionID ← Locate the region of the state in decomp
13: if regionID is same as previousRegionID then ▷ Drone is in the same grid cell.
14: continue to the next iteration ▷ Don’t store waypoint, move to next one.
15: end if
16: gridCoordinates← Convert regionID to grid coordinates
17: scaleFactor ← boundMax/gridLength
18: currentDirection← Difference between gridCoordinates and previousCoordinates
19: if currentDirection is same as previousDirection then ▷ Drone is going the same direction.
20: Update previousCoordinates and increment repeatCount ▷ Don’t store waypoint, move to next one.
21: continue to the next iteration
22: end if
23: if repeatCount > 0 then ▷ Drone is in a new grid cell going a new direction.
24: Write the midpoint of the previous grid cell to outputF ile ▷ Store waypoint.
25: Reset repeatCount to 0
26: end if
27: Write the midpoint of the current grid cell to outputF ile
28: Update previousCoordinates, previousRegionID, previousDirection
29: end while
30: Write ”0 0 0” to outputF ile to mark the end
31: Close outputF ile and inputF ile
32: end procedure


	Project Scope
	Introduction
	LTL Planning in OMPL
	Image to Workspace
	Abstraction and Deterministic Finite Automata
	Low Level Planner

	Quadcopter Dynamics using ArduCopter in Gazebo
	ROS Communication between Planner and ArduCopter for Autonomous Command
	Results
	Conclusion
	References
	Appendix
	Figures:
	Algorithms:


