
Self Landing Rocket using Deep Reinforcement Learning

Carson Kohlbrenner, Thomas Dunnington, Owen Craig

1) Link to full video of simulated mission here.
2) Link to GitHub repository here.

Abstract— Autonomous landing of rockets poses a significant
challenge in aerospace engineering. This study investigates the
effectiveness of various control methods for achieving precise
landings within a continuous state space. This begins with the
development of a dynamic simulation environment with two-
dimensional physics, neglecting aerodynamic effects. To control
the landing, three different control strategies are explored:
Proportional-Derivative (PD), Deep Q-Networks (DQN), and
Behavior Cloning. We begin by implementing a PD controller,
which demonstrates consistent performance in guiding rockets
to successful landings. Building upon traditional control meth-
ods, the application of Deep Q-Networks (DQN) and Behavior
Cloning for autonomous landing tasks is explored. The best-
performing Q-network achieves promising results, indicating
the potential of reinforcement learning techniques in complex
control tasks. Behavior Cloning yields results comparable to
the PD controller, showcasing the successful learning of expert
policies.

I. INTRODUCTION

The successful landing of rocket boosters represents a piv-
otal advancement in the field of space exploration, allowing
for a significant reduction in the cost of getting to space.
Traditionally, model predictive control has been the method
of choice for rocket landing maneuvers due to its precise
control capabilities. However, model predictive control de-
mands substantial computational resources, making it less
feasible for real-time applications on resource-constrained
platforms. As an alternative, Deep Reinforcement Learning
could be a potential alternative capable of deriving complex
control policies directly from raw sensor data. Although
training a Deep Reinforcement Learning network requires
significant computational effort, once the model is fully
trained, the computational demands for onboard operations
are considerably reduced, offering a more scalable solution
for real-time control in aerospace applications.

In this paper, a thorough analysis of various control
strategies for autonomously landing rocket boosters was
conducted. The paper assesses the performance of several al-
gorithms, focusing on their convergence speed, stability, and
ability to generalize across different landing scenarios. This
work seeks to showcase the efficacy and practical aspects of
using Deep Reinforcement Learning in autonomous rocket
landings, setting the stage for more efficient and reliable
launch vehicles.

All authors are with the University of Colorado Boulder, 1111 Engineer-
ing Drive, Boulder, CO USA. name.surname@colorado.edu.

Fig. 1: A rocket can learn to autonomously land on a landing pad
using deep reinforcement learning.

II. BACKGROUND AND RELATED WORK

The self-landing rocket problem is commonly formulated
as an MDP, but can also be modeled using control theory.
Mikulis-Borsoi provided an in-depth MDP formulation of
the problem using a dense set of three continuous actions
without using any control laws and achieved a success rate
of 95% [1]. Xue et al. attempted to improve upon the
MDP formulation using proximal policy optimization (PPO),
improved with LSTM, along with an imitation learning
algorithm to train a recurrent neural network on how to land
a rocket [2]. Their approach demonstrated that a basic PPO
algorithm can yield greater results when trained by an expert
policy through imitation and achieved a 92% landing success
rate. Their approach required that a policy be learned from
scratch initially.

The other approach to landing the rocket is using control
theory. Ferrante used PID controls, LQR controls, and model
predictive controls to land a rocket simulated in the Box2D
simulator and achieved the highest rewards using the PID
controller [3]. Other formulations of this problem have used
convex optimization to land a rocket that relies on a well-
described model of the dynamics to work. [4], [5].

III. PROBLEM FORMULATION

The problem of landing a rocket can be modeled as an
MDP where an agent decides what action to take given the
current state of the rocket. For this model, perfect observ-
ability of the rocket states was assumed and a simplified

https://youtu.be/wehH65Jpyrw?si=XRWZZH2yoleCvfv_
https://github.com/cKohl10/Self_Landing_Rocket

dynamical model was utilized. The simulation environment
includes a simplified two-dimensional problem with no aero-
dynamic effects. The rocket has a continuous state space with
seven states: S = {x, ẋ, y, ẏ, θ, θ̇, t}. These states include
the (x, y) position of the rocket, the attitude represented by
a pitch angle θ, the corresponding rates of change (ẋ, ẏ, θ̇),
and the time t.

The transition probabilities, T , are deterministic based on
the dynamics of the rocket system. The continuous dynamics
are approximated using Euler’s method of integration with a
time step of 0.1 seconds. The equations to propagate the state
of the rocket in the environment are shown below where F is
the force due to thrust, T is the torque, m is the mass, and I
is the moment of inertia. For this work, a small-scale rocket
is used with a mass of 3000 kg and a moment of inertia of
625,000 kgm2.

x(i+ 1) = x(i) + ẋ ·∆t

y(i+ 1) = y(i) + ẏ ·∆t

ẋ(i+ 1) = ẋ(i) +
F

m
cos(θ +

π

2
) ·∆t

ẏ(i+ 1) = ẏ(i) + (
F

m
sin(θ +

π

2
)− g) ·∆t

θ(i+ 1) = θ(i) + θ̇ ·∆t

θ̇(i+ 1) = θ̇(i) +
T

I
·∆t

t(i+ 1) = t(i) + ∆t

Each step in the environment will propagate the states with
a single time step. At each step, the agent has the following
action space: A = {2mg,mg, 0.2mg, 0}. These actions are
thrust values scaled relative to the weight of the rocket. In
this discrete action space, the agent learns what value of
thrust to execute at every time step. Instead of including
side thrusters as done in papers [1], [2], and [3], a vectoring
angle ϕ on the main rocket exhaust is used to control the
rocket torque T .

The vectoring angle is not included in the action space
and is instead dictated by a PD control law that always tries
to bring the rocket to the target and in an upright position.
This vectoring angle is derived from an ideal torque under
the following control law:

Tr = −K1rot ·θ−K2rot · θ̇−K3rot · ẋ−K4rot ·K3rot ·x (1)

Settling time constants of 2s and 0.2s were used for the inner-
loop gains. K1rot = 1.5625e6 and K2rot = 3.4375e6 were
used after taking the eigenvalues of the reduced inner-loop
state space model. Root locus plots then were used to set
K3rot = −2e6 and K4rot = 0.02. The resulting controller
was slightly underdamped. This control law outputted a
control torque that would reorient the rocket.

This reference torque value was then converted to a vector-
ing angle, assuming that the center of gravity of the booster is
exactly at the center of the booster. The following piecewise

Fig. 2: Problem setup showing how thrust vectoring angle ϕ is setup
to produce torque.

function converts the torque to the correct vectoring angle.

ϕ(t) =

{
sign(Tr) · ϕmax, if |Tr| > F · y

2 · sin(ϕmax)

arcsin
(
2·Tr

h·F
)
, otherwise

(2)

This piecewise function commands a maximum vectoring
angle if the torque required is greater than the torque
the booster can produce within the vectoring angle range.
Otherwise, the function calculates the vectoring angle that
will produce the required torque.

The rewards, R, depend on the final landing location and
the intermediate actions taken in the air. For a successful
landing, the rocket must land on the pad, have a low velocity,
and be upright. There are continuous function rewards to
incentivize learning by rewarding getting close to optimal
landing conditions. Equations 3, 4, and 5 are continuous
functions that increase in value when the rocket lands with
a condition closer to the desired landing configuration.
Namely, rx is the reward for achieving an x position close
to the target, rθ is for having the correct orientation, and rv
is for having low velocity.

rx = 15e
−(x−xtarg)

2

(xmax−xmin) (3)

rθ = 50e−π|θ| (4)

rv = 40e
√

ẋ2+ẏ2/vcrash (5)

These continuous functions are added to additional
bonuses for having good landing parameters. This is shown
below with the following tolerances: θtol = ± 10◦, θ̇tol =
± 10◦/s, ẋtol = ± 3 m/s, ẏtol = ± 5 m/s, xtarg = 0, and
vcrash = ± 5 m/s.

R(y = 0) = rx+rθ+rv+
∑

50 if x− xtarg < xtol

25 if |θ| < θtol & |θ̇| < θ̇tol

25 if |ẋ| < ẋtol & |ẏ| < ẏtol

The above rewards are added together when the rocket hits
the ground at y = 0. There are also intermediate rewards
during the descent of the rocket. These rewards are much
smaller and are used to guide the learning toward achieving
the larger rewards for a successful landing. Equation 6 is the
reward earned during the rocket’s descent. It is based on the
current velocity of the rocket ẋ and the path to the target
x⃗targ − x⃗. If the velocity is in the same direction as the path
to the rocket, the dot product results in a large number while
if it is directly opposite, it will be negative. This reward is
in place to incentivize learning by having the agent learn
to go toward the target. In addition, at any time during the
trajectory, if the rocket leaves the predetermined bounds of (-
100, 100) for x and (0, 2000) for y, there is a large negative
reward as shown by Equation 7. There is also a discount
factor of γ = 0.999 to incentivize shorter landing times. A
landing is considered a success if the rocket lands on the pad
and has a state within the aforementioned tolerances.

rdescent = 0.5
(x⃗targ − x⃗)T

||(x⃗targ − x⃗)||
⃗̇x (6)

rbound = −200 if |x| > xbound or |y| > ybound (7)

The goal of this project is to develop a model that can
handle a variety of different scenarios and successfully land
the rocket. To accomplish this, each simulation of the rocket
includes a random initial condition. The initial condition of
the rocket is randomly determined according to the following
bounds in Table I

TABLE I: Initial Conditions

State Min Value Max Value
x -100 m 100 m
y 2000 m 2000 m
ẋ -5 m/s 5 m/s
ẏ -20 m/s -10 m/s
θ −45◦ 45◦

θ̇ 0 ◦/s 0 ◦/s

The initial states have a random distribution except for
the initial height and angular rate. The height is constant for
each simulation to simplify the beginning of the control and
the angular rate is set to zero to simplify the dynamics at the
beginning of the landing burn.

IV. SOLUTION APPROACH

Three separate approaches for controlling the rocket to
land on the pad are explored: PD control, Deep Q-Learning,
and Behavior Cloning. A PD controller is a common method
for controlling dynamical systems. For this work, a PD con-
troller was developed and utilized as the expert for both the
DQN and Behavior Cloning methods. Deep Q-learning is a
popular reinforcement learning algorithm that can be used to
learn optimal policies in a variety of different environments.
The implementation of a Deep Q-network (DQN) to land
the rocket at random initial conditions was explored. Lastly,
Behavior Cloning is a supervised learning technique where
a function approximator learns to imitate the actions of

an expert. Supervised learning with the PD controller was
augmented with the Dataset Aggregation (DAgger) method
to create a robust model that imitates the expert.

A. PD Controller

The first phase of the solution was to design PD control
laws that operate in a continuous action space for the
booster’s thrust. The control law for the continuous thrust
is as follows.

F = clamp
(
−kt1 · (y − yref)− kt2 · ẏ, 0.0, 2 · g ·m

)
(8)

This control law commands a thrust to maintain a given
yref. The control law commands different yref for three flight
phases. In the first flight phase, the booster is commanded to
descend to 50% of the maximum height over a set descent
time (tD). In the second phase of flight, the control law
commands the booster to descend to 10% of the maximum
height. The final phase of flight is when the flight time is
greater than twice the descent time. In this phase, the booster
is commanded to land meaning yref is commanded to be 0.
yref is defined by the equation 9.

yref =

ymax ·

(
1− t

2·tD

)
for t < tD

0.1 · ymax ·
(
1− t−tD

tD

)
for t < 2 · tD

0 for t ≥ 2 · tD

(9)

Overall, this PD control law as well as the vectoring angle
control law work in tandem to control and land the booster
on target in a desired state.

B. DQN

The DQN solution to land the booster involves a com-
bination of control strategies and reinforcement learning
techniques. The solution used can be broken down into
two main phases. The solution begins by taking the PD
control laws for continuous action space (heuristic policy),
converting this policy into a discrete form suitable for neural
network training, and then a DQN to is trained to learn and
optimize landing strategies based on the discrete actions.

To use the PD controller as the heuristic policy in the
DQN, the continuous thrust values must be converted to the
discrete values in the action space. To do this the closest
discrete thrust value to the continuous thrust value is chosen
to be the heuristic action. This action is then used by
a ϵ-greedy with a linearly decaying ϵ that has an initial
value of ϵmax and decays to ϵmin over a set number of
exploring epochs. The policy uses this ϵ value to determine
which action is taken. First, the policy will return the action
corresponding to the maximum Q value with a probability
of ϵ, otherwise, the policy will return the action from the
heuristic policy 70% of the time or a random action 30% of
the time. This ϵ-greedy approach improves learning because
the agent will take the expert action often and a random
action sometimes to explore and learn better policies than
the expert.

Once the policy has been established, a Q network is de-
signed with a single hidden layer connecting two input/output
layers using the Relu activation function. Alongside training
this Q network, there are two additional networks: Q best,
which retains the Q network yielding the best average
reward throughout training, and the target Q network, which
stabilizes training by freezing the target values every five
epochs. With these defined networks, the training uses the
following parameters:

• Learning Rate: 0.0005
• ϵmax 0.6
• ϵmin 0.05
• Epochs 15000
• Exploring Epochs 7000
• Buffer Size 100000
• Batch Size 2000
• Data Added to the Buffer per Epoch: 1000
• Max steps to Evaluate 2000
The choice of the number of epochs was based on the

complexity of the system and its large number of steps
per episode. Given these factors, a substantial number of
epochs is necessary for the network to effectively learn how
to interact with the environment and successfully land the
booster. In addition, ϵ is decayed over only 7000 epochs as
the network needs to explore the environment, however, in
the final 8000 epochs, the agent should take the action that
returns the highest Q value most of the time, emphasizing
the exploitation of learned strategies.

Before the model was trained each epoch the model col-
lected tuples of experience using the current ϵ by interacting
with the environment and storing them in the buffer. This was
done for a maximum of 2000 steps or until a terminal state
was reached. If adding the new experiences to the buffer
caused the size to be greater than 100,000 the buffer was
shifted removing old experiences first. Then from the buffer,
2000 random experiences were sampled and used to train
the Q network using a loss function that aims to minimize
the difference between predicted Q-values and the target
Q-values. To train the network the flux.train! method was
used with the ADAM optimizer. Once the network has been
trained the current Q model was evaluated by finding the
average reward of the network over 1000 simulations. If
the average reward of the current Q network was the best
performing network it was copied to the best model. At this
point, the target Q was set to be the current Q network if five
epochs have passed since the last reset. This was repeated
for 15000 epochs. At the end of training, the best model was
evaluated for 10,000 episodes and saved as a BSON file.

C. Behavior Cloning

Given the consistently good results of the heuristic PD
controller, an attempt was made to clone the behavior by
training a neural network to approximate the best action at a
given state. Using the PD controller as the expert, the neural
network is trained on large data sets of state-action pairs
from full simulation trajectories. Once a supervised model is
trained, the Dataset Aggregation (DAgger) method is used to

further refine the function approximator to get a more robust
model. The neural network used has four hidden layers and
input/output layers. Within the hidden layers, there are 64
nodes and the Relu activation function is used. There are six
inputs to the network for each of the states except time, and
the output is a continuous thrust value. The loss function used
the mean square error and the Flux library in Julia was used
for training. With this structure, the following parameters
were used for learning:

• Inputs: [x, ẋ, y, ẏ, θ, θ̇]
• Output: F
• Learning Rate: 0.001
• Number of Episodes: 10000
• Batch Size: 5096
• DAgger Epochs: 100

With the large number of episodes, a large dataset of state-
action pairs was gathered, which was then used to train the
neural network. The data set was split into batches of 5096
state-action pairs and the network was trained using multiple
epochs until all data points had been processed and used
in training. Once the supervised training was complete, the
DAgger method leveraged the expert’s actions to improve
the robustness of the model. During each DAgger epoch, a
trajectory was simulated using the neural network’s policy.
At each step in the environment, the expert was used to get
the optimal action which was then consolidated into another
data set used to refine the model. Following the completion
of an epoch, the model’s performance improved slightly as
the new data helped the network approximate actions at states
it may have not seen before.

V. RESULTS

A. PD Controller

Using the PD controller resulted in consistent landings
within the continuous action space as shown by Figure 3.
In this figure, the arrows indicate the orientation of the
rocket pointing directly out of the top of the booster. A
total of 10 different trajectories are depicted with all of
them successfully landing within the tolerances listed in the
problem formulation. Important states and actions are shown
in Figure 4. The oscillatory motion due to the underdamped
system can be seen in the change of θ over time. The
control inputs change around 1250 time steps as the reference
input to the control law shifts as shown by Equation 9.
Table II shows the average cumulative reward of 10,000
episodes for each controller. Doing nothing resulted in a
negative reward of -27.8 which shows the need for control
to get a higher reward. With the PD controller, the average
cumulative reward was 2374.6 which is significantly higher
than no control. It is also evident from the trajectories in
Figure 3 that the controller can consistently control the
rocket’s motion to land on the target pad. The PD controller
successfully landed within the tolerances 95.4% of the time,
demonstrating the effectiveness of PD control.

TABLE II: Landing Results

Controller Mean Reward Reward SEM Total Impulse (MNs) Landing Time (s) Success %

Nothing -27.8 0.812 N/A N/A 0
PD 2374.6 5.45 4.6± 0.01 157± 0.01 95.4

DQN 5372.2 24.38 1.8± 0.3 60± 10 69.7
DAgger 2393.6 7.82 4.6± 0.01 155.9± 0.7 94.75

Fig. 3: PD controller sample trajectories

Fig. 4: PD controller states

B. DQN

Training the DQN resulted in the learning curve shown
in Figure 5. This curve shows that the training starts with
low average rewards, which is typical as the agent begins
by randomly exploring the environment, learning from the
rewards obtained from its actions. Then around epoch 3000
to 5000 the average cumulative rewards spike indicating the
agent discovered particularly effective strategies. However,
the well-performing network was forgotten and the average
return quickly dropped. These drops suggest that the agent

Fig. 5: DQN Learning Curve

is exploring new strategies that do not perform as well
as the previously discovered ones, or that it is failing to
consistently apply the best-learned strategies due to the
exploration component of the epsilon-greedy policy. The
DQN model eventually converges to a non-optimal policy
resulting in an average reward of around -200, despite
previously reaching higher peaks in performance. Several key
factors could influence this outcome, three likely causes are
the utilization of the experience replay buffer, the size of
the training batches, and the simple network structure. The
current training method contains a relatively small amount
of data which may not be sufficient to get a model to learn
the complex relations required to land the booster. Increasing
the size of the buffer could allow the network to remember
and learn from a more extensive range of past experiences,
however, this would increase the computational complexity.
The other factor that could influence the training is the Q
network’s structure; in this training, the model only has one
hidden layer which could make the network incapable of
learning the complex relationships in the data. Increasing
the number of hidden layers may boost performance, but
like enlarging the buffer, it also increases computational
complexity.

Despite the final Q network converging to a low average
reward, the best Q network during training returns an average
reward of 5372.2. Figures 6 and 7 show the trajectory and
states over time for 10 simulations using the DQN’s best
policy. The trajectories show that the Q network had success-
fully landed the booster within the desired ranges most of the
time, however, the movement is erratic and oscillatory. This
is also reflected in the video simulation which showcases
the erratic behavior of the DQN as compared to the smooth
damping in the imitated PD controller. This type of behavior

https://youtu.be/wehH65Jpyrw?si=XRWZZH2yoleCvfv_

Fig. 6: DQN Sample Trajectories

is not discouraged in the reward structure which allows the
DQN to achieve significantly larger rewards than the PD and
DAgger controllers despite having undesirable behavior.

The Q-network achieves higher rewards when compared
to other methods due to its ability to reach a terminal state
faster. By including a discount factor, reaching the terminal
state faster will result in larger Q values at each state.
This feature incentivizes the network to prioritize quicker
landings. During a DQN trajectory, the booster undergoes
free fall without applying any thrust. This is immediately
followed by a period of bursts of thrust to control and land
the booster. By having discrete actions, the network chooses
to use no thrust at certain time steps which allows for a
quicker descent. However, the lack of a continuous action
space causes more oscillations in its trajectory. Through
the use of discrete actions, the DQN’s ability to apply the
exact thrust needed for smooth control is restricted. Despite
the oscillatory motion, the Q-network achieves successful
landings 69.7% of the time within the designated target
area, while maintaining low linear and angular velocities, as
illustrated in Figure 7. This demonstrates the effectiveness
of the Q-network in handling the complexities of booster
landing operations.

C. Behavior Cloning

Figures 8 and 9 show the results of the Behavior Cloning.
Similar to the PD controller, the trained neural network can
consistently land the rocket within the desired constraints.
This means it successfully cloned the PD controller’s behav-
ior with comparable performance. Table II shows the differ-
ences between the PD controller and the DAgger clone. The
DAgger performed slightly better but had a large standard
error of the mean (SEM). However, the mean cumulative
rewards for both the DAgger and PD controller are very
similar indicating that the DAgger method was successful in
learning the expert policy. The learning curve in Figure 10
shows the loss with the mean square error over the number of
epochs. The error steadily decreases as the model is trained
with batches of 5096 data points per epoch.

One of the key differences between the DAgger and DQN
methods, as shown in the simulation, is the thrust level. In the

Fig. 7: DQN States

Fig. 8: DAgger Sample Trajectories

imitation network, there is a continuous value of thrust that
fluctuates over time. This can also be seen in Figure 10 with
the continuous curve of the thrust. Conversely, the DQN uses
discrete actions which is evident in the video from the flick-
ering thrust turning on and off in the discrete action space
as outlined in Section III. The thrust plot in Figure 7 also
reflects this behavior with thrust values constantly changing
between discrete values of A = {2mg,mg, 0.2mg, 0}. This
ultimately causes a difference between the landing time and
total fuel expenditure. The DQN had a significantly lower
total impulse than the PD and DAgger methods as shown
in Table II. This is due to the use of the discrete action
space which includes using zero thrust during the landing.
This shows that while the DQN has erratic movement, it
uses far less fuel and has a faster landing time leading to
larger rewards. Despite this, the imitation network had a
significantly better policy than the DQN with a success rate
of 94.75% compared to the DQN’s 69.7%.

https://youtu.be/wehH65Jpyrw?si=XRWZZH2yoleCvfv_

Fig. 9: DAgger States

Fig. 10: DAgger Learning Curve

VI. CONCLUSION

In this study, different control methods for landing a rocket
autonomously were explored. PD control and imitation learn-
ing yielded consistent landings as seen in Table II, whereas
deep Q learning landed less consistently but accumulated
more reward on average.

In terms of implementing these controllers on a physical
rocket, the DQN algorithm would not be the ideal choice
considering it converged on a high-risk high-reward policy
that would be potentially dangerous to boarded patrons or
cargo. Additionally, this policy rapidly fluctuated between
high and low thrust to level out the rocket. Such actions
may not be replicable on a physical rocket without precise
propellant flow controls. For this algorithm to work more
practically in the future, the rocket’s dynamics should be
modeled more accurately, and stricter constraints on parame-
ters such as fuel and angular acceleration should be enforced.
Proximal policy optimization may also yield better policies

when coupled with the intrinsic vectoring angle controller
and should be explored.

There are also practical limitations related to training. To
train the models, large amounts of data need to be acquired
which requires either an extremely accurate simulation envi-
ronment or frequent testing. Using a simulation environment
includes more uncertainty as the model cannot predict the
real dynamics perfectly. On the other hand, frequent testing
can be costly and take a lot of time. Overall, while the
controllers in this work produce good results, they require
large data sets to train and thus have practical limitations.
To improve the models’ robustness, a more accurate three-
dimensional simulation environment with aerodynamic ef-
fects should be utilized.

VII. CONTRIBUTIONS

The authors grant permission for this report to be posted
publicly. All algorithms were implemented from scratch and
used the CommonRLInterface and Flux libraries in Julia.

Carson Kohlbrenner: Helped with DQN tuning, paral-
lelization, supervised learning models, and generating im-
ages/videos.

Owen Craig: Led the DQN implementation and aided in
the writing of the paper.

Thomas Dunnington: Helped with the DQN implemen-
tation, the DAgger method, and writing the paper.

REFERENCES

[1] F. A. S. Mikulis-Borsoi, “Landing throttleable hybrid rockets with
hierarchical reinforcement learning in a simulated environment,” 2020.

[2] S. Xue, H. Bai, D. Zhao, and J. Zhou, “Research on intelligent
control method of launch vehicle landing based on deep reinforcement
learning,” Mathematics, vol. 11, no. 20, p. 4276, 2023.

[3] R. Ferrante, “A robust control approach for rocket landing,” Master’s
thesis, 2017.

[4] X. Liu, “Fuel-optimal rocket landing with aerodynamic controls,”
Journal of Guidance, Control, and Dynamics, vol. 42, no. 1, pp. 65–77,
2019.

[5] Z. Wang and M. J. Grant, “Constrained trajectory optimization for plan-
etary entry via sequential convex programming,” Journal of Guidance,
Control, and Dynamics, vol. 40, no. 10, pp. 2603–2615, 2017.

	Introduction
	Background and Related Work
	Problem Formulation
	Solution Approach
	PD Controller
	DQN
	Behavior Cloning

	Results
	PD Controller
	DQN
	Behavior Cloning

	Conclusion
	Contributions
	References

